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Abstract—The importance of choosing a suitable feature
detector and descriptor to find the optimal correspondence
between two sets of image features has been highlighted. In
this direction, this paper presents an evaluation of some well
known feature detectors and descriptors; including HARRIS-
FREAK, HESSIAN-SURF, MSER-SURF, and FAST-FREAK;
in the search for an optimal detector and descriptor pair that
best serves the matching procedure between two images. The
adopted matching algorithm pays attention not only to the
similarity between features but also to the spatial layout in
the neighborhood of every matched feature. The experiments
conducted on 50 images; representing 10 objects from COIL-
100 data-set with extra synthetic deformations; reveal that
HARRIS-FREAK’s extractor results in better feature corre-
spondence.
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I. INTRODUCTION

Image matching or in other words, comparing images

in order to obtain a measure of their similarity, is an

important computer vision task. It is involved in many dif-

ferent applications, such as object detection and recognition,

image classification, content based image retrieval, video

data mining, image stitching, stereo vision, and 3D object

modelling. A general solution for identifying similarities be-

tween objects and scenes within a database of images is still

a faraway goal. There are a lot of challenges to overcome

such as viewpoint or lighting variations, deformations, and

partial occlusions that may exist across different examples.

Furthermore, image matching as well as many other vision

applications rely on representing images with sparse number

of distinct keypoints. A real challenge is to efficiently detect

and describe keypoints, with robust representations invariant

against scale, rotation, view point change, noise, as well as

combinations of them [1].

Keypoint detection and matching pipeline has three dis-

tinct stages which are feature detection, feature description

and feature matching. In the feature detection stage, every

pixel in the image is checked to see if there is a unique

feature at this pixel or not. Subsequently, during the feature

description stage, each region (patch) around the selected

keypoints is described with a more robust and invariant

descriptor which can be used to match against other de-

scriptors. Finally, at the feature matching stage, an efficient

search for prospective matching descriptors in other images

is made [2].

In the context of matching, a lot of studies have been used

to evaluate interest point detectors as in [3], [4], [5]. On the

other hand, little efficient work has been done on the eval-

uation of local descriptors. K. Mikolajczyk and C. Schmid

[6] proposed and compared different feature detectors and

descriptors as well as different matching approaches in their

study. Although this work proposed an exhaustive evaluation

of feature descriptors, it is still unclear which descriptors

are more appropriate in general and how their performance

depends on the interest point detector.

In this paper, a brief discussion of some feature detectors

and descriptors is given. They have been selected because of

their high performance and low complexity. Unlike other lit-

erature reviews which aim to solely compare between feature

detectors and descriptors, the present work aims at finding

a suitable feature detector and descriptor combination to

serve the matching procedure between two images. In addi-

tion, the proposed matching algorithm, ”Similarity-Topology

Matching” [7], is reviewed. Finally, intensive experiments

are performed to find the most compatible feature detector

and descriptor combination with the proposed matching

approach to get a superior performance.

This paper is organized as follow: the selected state-of-

the-art feature extractors are briefly described in section 2.

The proposed matching approach is reviewed in section 3.

Section 4, presents the conducted experiments to evaluate

the performance of the matching approach with different

feature extraction techniques. Finally, the conclusion of this

work and the recommendations for future work are presented

in section 5 and 6, respectively.



II. FEATURE DETECTION AND EXTRACTION

Unlike other literature reviews which aim to solely com-

pare between feature detectors and descriptors, the present

work aims at finding a suitable feature detector and descrip-

tor combination to serve the matching procedure between

two images. Firstly, a brief discussion of some feature

detectors and descriptors relevant to this study is given.

A. Feature Detectors

1) FAST-HESSIAN: HESSIAN is considered as a blob

detector [8]. The determinant of the Hessian matrix is used

to detect the location of a keypoint as well as its scale. A

local maximum of the determinant denotes the existence of

a blob. The Hessian matrix H(x, σ) at a point X = (x, y)
at a scale σ is expressed in (1):

H(x, σ) =

[

Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]

(1)

Where Lxx(x, σ) is the convolution of the Gaussian

second order derivative with the image I at point x and

similarly for Lxy(x, σ) and Lyy(x, σ). In order to speed up

the calculations in (1), the box filters technique approximates

the second order Gaussian derivatives using integral images.

Also, the scale space is constructed by increasing the filter

size instead of decreasing the image size as shown in (2).

det(Happrox) = DxxDyy − (0.9Dxy)
2 (2)

2) Maximally Stable Extremal Region (MSER): MSER is

considered as a region detector [9]. MSER is a connected

component of an appropriately thresholded image. The word

extremal indicates the difference in pixels intensities which

exist inside and outside the MSER. The maximally stable

in MSER describes the property optimized in the threshold

selection process. The set of extremal regions (E), the set

of all connected components, has a number of properties.

Firstly, extremal regions (E) are unchangeable under the

monotonic change. Secondly, continuous geometric transfor-

mations preserve topology of the regions. Finally, the num-

ber of extremal regions is less than the number of pixels, this

leads to a preservation of these regions under a broad class of

geometric and photometric changes. Implementation Details.

The enumeration of the extremal regions (E) is nearly linear

in terms of the image pixels number. Initially, the pixels are

sorted by their intensities. Then, pixels are marked in the

image and a list of connected components and their areas

as a function of intensity is sorted by using the union-find

algorithm. The maximally stable are determined within the

extremal regions as those corresponding to thresholds were

the relative area change as a function of relative change of

threshold is at a local minimum. In other words, the MSER

are the regions inside the image where local binarization is

stable over a large range of thresholds.

3) Feature from Accelerated Segment Test (FAST): FAST

is considered as a corner detector [10] [11]. FAST algorithm

works in the following manner: 1. Given any pixel p in an

image, it is required to know whether it is an interest point or

not? 2. Set a threshold intensity value T. 3. Assume a circle

of 16 pixels around the pixel p. 4. The point is considered an

interest point, if there are at least N contiguous pixels (out

of the 16 pixels) each having an intensity above or below the

intensity at p by the threshold T. To enhance the algorithm

speed, first the intensity of pixels numbered 1, 5, 9 and 13

is compared with the intensity of pixel p. If at least three of

the four pixel values do not satisfy the condition given in

step 4, then this pixel is not an interest point and is rejected.

Otherwise, the 16 pixels are checked.

4) HARRIS: HARRIS is considered as a corner detector

[12]. It is based mainly on the second moment matrix

(the auto-correlation matrix) as shown in (3). This matrix

represents the gradient distribution in a local neighbourhood

of a point.

M = σ2

Dg(σI) ∗

[

I2x(x, σD) IxIy(x, σD)
IxIy(x, σD) I2y (x, σD)

]

(3)

The local image derivatives are computed using Gaussian

kernels of scale σD. Then the derivatives are smoothed

using Gaussian window of scale σI . The eigenvalues of this

matrix are used to represent the variations in two orthogonal

directions in a patch around the point which is defined as

σI . Corners can be found in an image when the eigenvalues

in both directions are large. Harris proposed an evaluation

of the cornerness as shown in (4), where det(M) and

trace(M) are the determinant and the trace of the matrix

(M) respectively.

cornerness = det(M)− λtrace(M) (4)

As the determinant of a matrix is the product of its

eigenvalues and the trace is the sum of them. Hence, a corner

is detected when both eigenvalues are large. In most of the

feature detection survey, Harris corner is considered the most

informative and repeatable detector.

B. Feature Descriptors

1) Speeded up Robust Features(SURF): SURF is con-

sidered as a fast scale and rotation invariant interest point

descriptor for detecting features in an image [8] [13]. It

seems that the description of the nature of the underlying

image intensity pattern is more distinctive than histogram

based approaches. The use of integral images make the

descriptor competitive in terms of speed. The descriptor

gives the distribution of the intensity content within the

interest point neighborhood. This is done on the distribution

of first order Haar wavelet responses in x and y directions.

Orientation Assignment: In order to achieve invariance

to image rotation each detected interest point is assigned



a reproducible orientation. Haar wavelet responses of size

4σ are calculated for a set of pixels within a radius of 6σ
of the detected point, where σ refers to the scale at which

the point has been detected. The responses are weighted

with a Gaussian centered at the interest point. The dominant

orientation is selected by rotating a circle segment covering

an angle of 60 ◦ around the point. At each position, the x

and y-responses within the segment are summed and used to

form a new vector. The longest vector lends its orientation

to the interest point.

Descriptor based on Sum of Haar Wavelet Responses:

The first step consists of constructing a square window cen-

tered on the interest point and oriented along the orientation

selected in the previous step. The size of this window is 20σ.

The window is split up regularly into smaller 4x4 square

sub-regions. For each sub-region, haar wavelet responses are

calculated at 5x5 regularly spaced sample points. Therefore,

each subregion contributes four values to the descriptor

vector leading to an overall vector of length 4x4x4 = 64.

The resulting SURF descriptor is invariant to rotation, scale,

and brightness.

2) Fast Retina Keypoint (FREAK): FREAK is a new

descriptor inspired by the Human Visual System and more

precisely the retina [14]. FREAK is considered as a fast,

compact and robust keypoint descriptor. Based on the sam-

pled retinal patterns; image intensities are compared pair by

pair yielding successive binary strings. In order to have a

highly structured pattern, the pairs should be wisely chosen

so as to reduce the dimensionality of the descriptor. This

pattern should mimic the saccadic search of the human eyes.

Retinal sampling pattern: The retinal (circular) sampling

grid has been used. It has higher density of points near

the center and the density of points decreases exponentially.

Each sample point is smoothed to reduce its sensitivity to

noise by Gaussian kernels. The exponential change in size

and the overlapping receptive fields are considered the main

difference against other techniques.

Coarse-to-fine descriptor: The binary descriptor has

been constructed by thresholding the difference between ev-

ery pairs of receptive fields and their corresponding Gaussian

kernel. A large descriptor consisting of thousands of pairs

is obtained. Unfortunately, most of these pairs are useless

in efficiently describing an image. The algorithm used to

decide the most relevant pairs is described as follows:

Firstly, a matrix containing all the extracted keypoints is

constructed. Each row in the matrix represents a keypoint

descriptor made of a combination of all possible pairs. Then,

as a high variance is required in order to have a discriminant

feature, therefore a rearrangement of the columns with

respect to the highest variance is made.

Saccadic search: The idea of the saccadic search has been

used by analyze the descriptor in several steps. Searching

with the first 16 bytes of the descriptor is used as a

primary filter. If the distance is less than a threshold, the

Figure 1. Feature detectors example (from left to right: HARRIS, FAST,
HESSIAN, MSER).

search is extended to include the next 16 bytes to get finer

information.

Orientation: The estimated local gradients of the selected

pairs are aggregated, so as to evaluate how much the

keypoints are rotated. Pairs with symmetric receptive fields

w.r.to the center are the most suitable for this purpose and

should be selected.

Four feature detectors (Fast-Hessian, MSER, Harris and

FAST) and two feature descriptors (SURF and FREAK)

are illustrated before. The four detectors are considered the

fastest detectors. In addition, these detectors have superior

accuracy. Four combinations of these detectors and descrip-

tors are used which are FastHessian-SURF, MSER-SURF,

FAST-FREAK and Harris-FREAK. These extractors will be

used to serve the matching algorithm between two images

in the next section. The performance and the complexity

are taken into consideration when these combinations are

chosen. An example of each feature detector illustrated

before is depicted in fig. 1.

III. PROPOSED MATCHING APPROACH

Basically, the conventional matching approaches aim to

find the correspondences between features exist in a pair

of image. These approaches depend mainly on finding the

minimum distance between features (descriptors) in feature

space as shown in (5), where Dij is the similarity measure

between feature i from the first image and feature j from

the second image. Xij is a matching between feature i and

feature j, i.e. Xij = 1 if feature i in the 1st image is mapped

to feature j in the 2nd image and Xij = 0 otherwise. Note

that Xij ∈ {0, 1}.

Min F =
∑

∀i,j

Dij Xij (5)

Limitations: The similarity measure between features

deals with each feature individually rather than a group

of features. Consequently, the minimum distance between

features can be misleading in some cases and as a result the

performance of the algorithm deteriorates. In other words,

the minimum distance criterion has no objection for a feature

to be wrongly matched as long as it successfully achieves

the minimum distance objective.



We proposed a new matching algorithm called

”Similarity-Topology Matching” in [7]. The proposed

algorithm pays attention not only to the similarity between

features but also to the spatial layout of every matched

feature and its neighbors. A new term, describing the

neighbourhood/ topological relations between every pair

of features has been added α
∑

∀i,j,k,l
Xij Xkl Pij,kl.

In addition, another term has been added to relax the

constraints β (Min(m,n) −
∑

∀i,j
Xij as shown below in

(6).

Min F =
∑

∀i,j

Dij Xij + α
∑

∀i,j,k,l

Xij Xkl Pij,kl

+ β (Min(m,n) −
∑

∀i,j

Xij) (6)

Subject to:

n
∑

j=1

Xij ≤ 1 (a)

m
∑

i=1

Xij ≤ 1 (b)

The second term in (6) represents a penalty term over

all pairs of features. Pij,kl is called a penalty matrix. It is

used to penalize matching pairs of features Xij in one image

with corresponding pairs Xkl in the other image if they have

different topologies. It is binary and of (m × n,m × n)
dimension; where m, n are the number of features in the

first and the second images respectively. Pij,kl = 1 if the

features k, l in the second image have different topology

when compared to features i, j in the first image. In other

words, if any two features are neighbours to each other in

the first image and matched to two features in the second

image which are not neighbours to each other or vice versa.

Hence a penalty term will be added to this matched pair.

(α) is called a topology coefficient. It indicates how much

the matching algorithm depends on the topology between

images and it will be adjusted according to the image type.

In the experiments, (α) was chosen in a range from 0 to 0.1.

The topology term has nearly no impact when the difference

of similarities between the features is high.

(β) is called a threshold coefficient. It indicates how much

the matching algorithm depends on the features matching

threshold. It will be adjusted according to the image type.

In the experiments, (β) was chosen in a range from 0 to 0.5.

Constraints: Constraint (a): There exists at most one in

every column of x. Constraint (b): There exists at most one

in every row of x. These two constraints ensure that every

feature should match at most one feature.

Algorithm (1) gives a summary of the proposed local

features matching algorithm, which depends not only on

the similarity between features but also on the topological

relations between them.

Algorithm 1 Similarity-Topology Matching

Input: A pair of images, topology coefficient (α), and

threshold coefficient (β).

1) For every image:

a) Detect local features (select strongest 100);

b) Extract a descriptor for every feature;

2) For every feature (descriptor) in the 1st image: Cal-

culate the similarity between it and all the features

in the 2nd image;

3) Penalize any pair of features that matches to a pair

of different topology;

4) Compute the objective function using (6) (features

similarity and topological constraints);

Output: List of features correspondences.

IV. EXPERIMENTS

Unlike other studies that aim to evaluate feature ex-

tractors in general, the main purpose of these experi-

ments is to find a robust feature extractor that serves the

matching approach described in section III. The experi-

ments have been done using four different feature extrac-

tors: HARRIS-FREAK, HESSIAN-SURF, MSER-SURF,

and FAST-FREAK. Columbia Object Image Library (COIL-

100), has been used in the experiments [15]. COIL-100 is

a database of color images which has 7200 images of 100

different objects (72 images per object). Ten objects of the

aforementioned dataset have been chosen to perform the

experiments. These objects with extra synthetic deformations

such as rotation, partial occlusion and heavy noise have been

used for this purpose. In addition, a duplication of the same

object has been found in the same image with deformations,

but one as a whole and one as parts to make the matching

more challenging.

Evaluation criterion: For each pair of images, every in-

terest point in image 1 is compared to all interest points

in image 2 by comparing their descriptors four times. Ev-

ery time with different feature extractor (HARRIS-FREAK,

HESSIAN-SURF, MSER-SURF, and FAST-FREAK). The

detection rate of the best N matches has been calculated to

measure the performance. The detection rate (R) is defined

as the ratio between the number of correct matches and the

number of all possible matches [6].

A Receiver Operating Characteristic (ROC) based crite-

rion has been used to show the detection rates versus the

number of most similar matches allowed (N). The ROC

curves are shown in table I and fig. 2.

R =
Number of Correct Matches

Number of possible Matches

Table II depicts some experimental results. Each row in

this table represents an instance. Each column represents

a feature extractor. Lets take a closer look to the first



Table I
THE EXPERIMENTAL RESULTS SUMMARY

Correct Matches Possible Matches Detection Rate

HARRIS-
704 1100 0.64

FREAK

HESSIAN-
660 1100 0.6

SURF

MSER-
616 1100 0.56

SURF

FAST-
528 1100 0.48

FREAK

experiment (row). In this experiment, the candidate object is

subject to rotation and an exact but partitioned copy of the

object is added to the image making the matching process

more challenging. The total number of possible matches is

20. The HARRIS-FREAK, HESSIAN-SURF, MSER-SURF,

and FAST-FREAK successfully match 14, 12, 12, and 10

features respectively.

From these experiments, the HARRIS-FREAK,

HESSIAN-SURF, MSER-SURF, and FAST-FREAK

are suitable to serve our matching approach. In addition,

the HARRIS-FREAK is the best feature extractor that can

be used prior to our matching approach to get more robust

feature correspondence.

V. CONCLUSIONS

In this paper, a comparison between HARRIS-FREAK,

HESSIAN-SURF, MSER-SURF, and FAST-FREAK is con-

ducted to find an optimal feature detector and descriptor

combination for image matching. Test images are syn-

thesized to be tricky enough to challenge the matching

process with every feature extractor. It is found that features

detected using different detectors perform differently dur-

ing the correspondence process. HARRIS-FREAK detected

features are more capable of surviving during the matching

process and results in a more robust feature correspondence.

Figure 2. ROC curve for features matching experiments

Based on the experimental results, we can conclude that the

robustness of feature detection does not imply the robustness

of feature correspondence.

VI. FUTURE WORK

After the proof of concept of the aforementioned approach

has been verified as well as finding the optimal features

extractor to serve this approach, a lot of work remains to

be done in order to generalize the local features matching

approach and achieve high degree of robustness and com-

putational efficiency. First, a preprocessing step is required

to automatically evaluate the parameters values (alpha, beta)

should be done. These values may depend on images size,

number of extracted features in each image and images

resolution. Second, an optimization of the algorithm to be

more computationally efficient should be made without any

loss in the algorithm accuracy as this algorithm should be

used in real-time applications.
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